
1 The Rise of Stromgren Spheres

1a) Defining Ṅion (Ṅrec) as the total number of photoionizations (recombinations) per second that
occur in the surrounding gas, we have the expression

dNtot

dt
= Ṅion − Ṅrec (1)

As in the standard Stromgren argument, we say that all ionizing photons emitted by the star are
absorbed in the surrounding medium, thus Ṅion is simply the number of ionizing photons emitted
per second, denoted by Q

Ṅion = Q =

∫ ∞

vt

Lν(ν)

hν
dν (2)

Since we assume that all photons come out at a single frequency ν0, we simply have

Q =
L

hν0
(3)

The number of total radiative recombinations per second is

Ṅrec = nenpαBV (4)

where ne, np are the electron and proton number densities, V is the volume, and we will use the αB
recombination coefficient (i.e., we will assume all ionizing photons are trapped in the HII region).
Finally, the total number of atoms in the HII region is Ntot = nV . Assuming the HII region is
essentially totally ionized, np = ne = n, where the total number density n is assumed to be constant
with radius. Then equation 1 can be written

n
dV

dt
= Q− n2αBV (5)

which can be written
dV

dt
= nαB

[
Q

n2αB
− V

]
(6)

We see the characteristic scales are the recombination time trec = (nαB)−1 and the Stromgren
volume, Vs = 4πR3

s/3 = Q/n2αB , where the stromgren radius is

Rs =

[
3Q

4πn2αB

]1/3
(7)

So a nice way to write the differential equation is

dV

dt
= − Vs

trec

[
V

Vs
− 1

]
(8)

The solution is
ln(V/Vs − 1) = −t/trec + C (9)

The integration constant C = 0 since the volume is zero at t = 0, so

V (t) = Vs(1− e−t/trec) (10)

or in terms of the radius
R(t) = Rs(1− e−t/trec)1/3 (11)
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We see that as t → ∞, the radius of the HII region goes to Rs, as expected. The timescale for the
HII region to grow is given by the recombination timescale trec = 1/nαB .

1b) At a temperature T = 104 K, the recombination coefficient is αB ≈ 2× 10−13. So plugging in
numbers we find

trec = (nαB)−1 ≈ 1.6× 105 years (12)

This is comparable to the lifetime of an O-star, so the HII region will just about grow to its stromgren
radius when the star is about to die.

1c) We can find the velocity of the edge of the HII region by differentiating our solution

v(t) =
dR(t)

dt
=
Rs
trec

e−t/tred

3
(1− e−t/trec)−2/3 (13)

We could have guessed that characteristic velocity of the HII region expansion is

vs ∼ Rs/trec ≈ 107 cm s−1 (14)

This is about an order of magnitude greater than the sound speed c ∼ (kT/mp)
1/2 ∼ 106 cm s−1.

Thus the HII region expansion is initially supersonic and we can neglect hydrodynamical effects.

1d) To determine the ionization state at a radius r, we apply the equation that expresses photoion-
ization equilibrium

4π

∫ ∞

0

Jν(r)

hν
σ(ν)nHI = nenpαB (15)

which states that the local photoionization rate equals the radiative recombination rate. Here σ(ν)
is the bound-free cross-section for hydrogen, and Jν(r) the monochromatic mean intensity of the
radiation field at radius r. Assuming the radiation source is an isotropically emitting point source
of intensity Iν and radius R?, and there is negligible attenuation above it (which should be OK at
very small radii) we can use the standard result

Jν =
IνR

2
?

4r2
(16)

The monochromatic flux at the surface of a lamber radiator is Fν = πIν and so the monochromatic
luminosity is

Lν = 4πR2
?Fν = 4π2R2

?Iν (17)

So we can write the monochromatic mean intensity as

Jν =
Lν

16π2r2
(18)

Using this value, the photoionization equilibrium equation becomes

Qσ0
4πr2

nHI = nenpαB (19)

where σ0 = σ(ν0). Defining the ionized fraction xH = nHII/n, we have for pure hydrogen, ne =
np = xHn and nHI = (1− xH)n and so

4πQn

r2
(1− xH) = n2x2HαB (20)

Dividing both sides by n2αB , we can write this in dimensionless form

2Ω(1− xH) = x2H where Ω =
2πQσ0
nr2αB

(21)
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Where the dimensionless quantity Ω is apparently the useful measure for how strong the ionization
is. We can now solve the quadratic equation for xH

xH = −Ω +
√

Ω2 + 2Ω (22)

and hence
xHI = 1− xH = 1 + Ω−

√
Ω2 + 2Ω (23)

We should check our limits. For a very weak source (L → 0 at fixed r), we have Ω → 0 and find
no ionization xH = 0, as expected. For a very strong source (L → ∞ at fixed r), we have Ω → ∞,
and we need to take a little more care in taking the limit. We use a Taylor expansion in the small
quantity 2/Ω:

xH = −Ω + Ω(1 + 2/Ω)1/2 ≈ −Ω + Ω(1 + 1/Ω + ...) ≈ 1 (24)

As expected, the medium is totally ionized.

1e) To find the small r behavior, we note that this is the limit Ω→∞, so we use an Taylor expansion
similar to the above, but keep another term

xHI = 1 + Ω− Ω(1 + 2/Ω)1/2 ≈ 1 + Ω− Ω(1 + 1/Ω− 1/4Ω2 + ...) (25)

Thus to lowest order in 1/Ω we find

xHI ≈
1

4Ω
∝ r2n

L
(26)
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2 Chilling in the Halo

Provided by Io Kleiser and Janos Botyanzski
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From this we can derive that

yII =
nII

nI
=

Cic

αAne
= 1.3 × 1015

(
k

χ

)2(
T

T4

)
e−χ/kT (21)

And we can write

xII =
nII

nH

=
nII

nI + nII

=
yII

1 + yII

(22)

These will be important when writing out the electron and proton densities in what follows.

The emmission is given by

εff = 1.4 × 10−27Z2nenIIT
1/2gff (23)

We have already calculated nII above. Assume that gff ≈ 1, set Z = 1 for Hydrogen, and

convert to dimensionless units. Then

Λff =
ε

nenH
= 1.4 × 10−25 yII

1 + yII

(
T

T4

)1/2
erg cm3

s
(24)

For bound-free emission, again the proton and electron fractions are important. The emission

is

εbf = 3.25 × 10−13nenikBT

(
T

T4

)−1/2

(25)

Convert to dimensionless units. Then

Λbf =
ε

nenH
= 5 × 10−25 yII

1 + yII

(
T

T4

)1/2
erg cm3

s
(26)

For Lyman-α emission,

εLy−α ≈ hν0n2A21 = hν0n1C12 (27)

where ν0 is the frequency associated with the Lyman-α transition, A21 is the rate of transi-

tions from n = 2 → n = 1, and C12 is the rate of collisional excitation from n = 1 → n = 2.
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Using the formulae derived in class, we can rewrite C12 in the final expression to get

εLy−α ≈ 2.16hν0n1nef

(
hν0

kT

)−1.68

T−3/2e−hν0/kT (28)

where f ≈ .5 is the oscillator strength of the Lyman-α transition and n1 is the fraction of

neutral Hydrogen atoms in the ground state (assmue n1 ≈ nI). Converting into dimensionless

variables, we have

ΛLy−α =
ε

nenH
= 4 × 10−18 yII

1 + yII

(
hν0

kT

)−.68(
T

T4

)−1/2
erg cm3

s
(29)

To calculate the fraction of neutral Hydrogen, write

nI

ntot
=

nI

nI + nII
=

1

1 + ynII

(30)

So putting these together,

ΛLy−α =
ε

nenH
= 4 × 10−18 1

1 + ynII

(
hν0

kT

)−.68(
T

T4

)−1/2
erg cm3

s
(31)

2c

The probability of absorption into the thermal pool is just the probability of collisional

de-excitation. We can write this as

P =
C21

C21 + A21
(32)

where A21 = 6.3 × 108s−1 (from NIST) and at T = T4, ne = 1cm−3,

C21 = 5 × 10−3s−1 (33)

Plugging these values into the above equation, we have

P =
C21

C21 + A21

≈ 10−11 (34)

So there is a very small probability that absorption into the thermal pool will take place.
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2d

We solve the following balance equations

n5C56 = n6R65 (35)

n6C67 = n7R76 (36)

noxy = n5 + n6 + n7 (37)

First divide the latter equation by n6 and invert to get

n6

noxy

=

[
n5

n6

+ 1 +
n7

n6

]−1

(38)

Now plug in the relations from above to arrive at
n6

noxy
=

[
R65

C56
+ 1 +

C67

R76

]−1

2e

Look at the Grotrian diagram for the OVI ion. You can see that the first excited state is a

short energy step above ground state (∆E = 12eV). From this we can confidently say that

mostly the ground and first excited states will be populated. The cooling will therefore be

dominated by the transitions n = 2 → n = 1.

For OVII, the lowest energy level transition requires a λ = 22A photon to excite the electron

to that level,, or a gas temperature of ∆E/k = 6 × 106 Kelvins. This is outside of our

temperature range, so we can neglect this temperature.

For OVIII, the lowest energy level transition requires a λ = 18A photon to excite the

electron to that level,, or a gas temperature of ∆E/k = 8 × 106 Kelvins. This is outside of

our temperature range, so we can neglect this temperature.

But a transition for OV only requires a λ = 1218A photon to excite the electron to that

level, or a gas temperature of ∆E/k = 1 × 105 Kelvins. Plenty of particles will have enough

energy to impart collisionally to excite this transition.
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2f

Here we derive the cooling function for the line transition of OVII. We assume CIE again.

Start with the expression for emission:

εOVI = n2A21hν0 (39)

where ν0 is the frequency associated with the line transition and n2 is the number density

of particles in the excited state of OVI. Assuming collisional de-excitation is a negligible

process. Then

n2A21 = n1C12 = (nOVI − n2)C12 (40)

Rearranging:

n2 = nOVI
C12

C12 + A21
(41)

And recall from section (2d)

nOVI

noxy

=

[
R65

C56

+ 1 +
C67

R76

]−1

(42)

Assuming solar abundances, we can make the following conversion

nOVI

noxy

=
XH,sol

Xoxy,sol

nOVI

nH

(43)

where we have defined Xoxy,sol = noxy/ntot in the sun. Thus, finally, we can write

n2 = nH
Xoxy,sol

XH,sol

[
R65

C56
+ 1 +

C67

R76

]−1
C12

C12 + A21
(44)

Putting it all together,

ΛOVI =
ε

nenH

= hν0A21
Xoxy,sol

XH,sol

[
R65

C56

+ 1 +
C67

R76

]−1
C12

C12 + A21

erg cm3

s
(45)

where

C12 ≈ 3.9 nef

[
hν0

kT

]−1

T−3/2e−hν0/kT
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for ν0 corresponding to the line transition,

C56 = 2.7ne

[
χ56

kT

]
T−3/2e−χ56/kT

C67 = 2.7ne

[
χ67

kT

]
T−3/2e−χ67/kT

R65 = 2 × 10−13Z2(T/T4)
−1/2

for Z=7,

R76 = 2 × 10−13Z2(T/T4)
−1/2

for Z=6.

The cooling functions from section (2b) and (2f) are plotted in Fig. 1.

Figure 1: Cooling function. Courtesy of J.L. Barnes.
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